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A Bayesian Approach to Bioassay

by

D. Basu and Richard Fagerstrom
(The Florida State University)

ABSTRACT
\

9 This article explains in general terms how some sequential bioassay

...~thods like the stochastic approximation method or the up-and-down method

are not in conformity with the likelihood principle. Irrespective of the

sampling plan, the bioassay data may be analyzed in terms of the following

simple prior probability model for the response probabilities.

Let xj ’< 4< ... < x~
’be the distinct dosage levels used in a bioassay

‘xperiaent and let < < ... < (be the corresponding unknown response

probabilities. Let U1
1’

” P~ and U~ = (P
1 
- P~~~~/(l - P ] ~), i • 2, 3, ...

The u. ’s are regarded as mutually independent random variables taking values
1

in the unit interval . The P~”s then form a t4arkov c~ain. The means and

the variances of the p’ ’s ar: related to those of the U ”s in a rather simple
~~~~~~

fashion . The case where U “.. Beta(l , A~) is found to be particularly

tractable for the analysis of bioassay data.
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- if 1. INTRODUCTION

This report is concerned with the following problem of quantal-response

bioassay. In the background there is a sequence of i.i.d. random variables

..., Z~ which are not direct ly observable and have coemon c.d.f. F. Even

thou ~i each is unobservable, it is possible to verify for any fixed

Xi c R whether Z4 � i.e. we can observe for each i

Y1(x1) — ‘{zi�xi}

.
~
e ~.aremetet of interest is ea(o < a < 3), which is assumed to be uniquely

~efined by the equation 
~~~~ 

- a.

Pros a biological standpoint we consider a population of individuals

which may be subject to a stimulus. For each member there exists a threshold

dose of the stimulus above which the individual respoflds and below which it

thes not. Therefore, the threshold dora Z for a randomly selected subject is a

• random variable with a c.d.f. F. Experimentation is conducted through

the selection of N subjects, for which th. threshold doses are Z1, ...,

and the testing of the ith (i • 1, ... , N) subject for response to a dose

level X j  of the stimulus. We wish to estimate the dose to which a proportion

a of the population will respond , which is

2. SOME SE(~JENTIAL DESIGNS

In pursuit of a solution to this problem, a variety of d.signs and

c~rrespow”.ng analyses has been proposed. S.qu.ntial methods hay, received

close theoretical attention. Among the most prominent are stochastic

-ipproxiastion and the up-and-down method and its modifications. According

— - 
— 
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to the theory of stochastic approximation, the Xj ’S are selected in the

following manner: x1 is picked by the experimenter md

xi+1 x
~~
+ a

~
(a_ Y

~
(x1)) for i � l ,

where the ai’s are positive real numbers such that

• 2
H ~~a1 =~~ and Ia. <

~~~i—i i—l i

and XN+l is the estimator ~ 0<~ 
after N steps. The design may be modified in

a straightforward manner to accommodate the case of multiple observations at

each step. Theorems by Slum [3) and Sacks [6) may be invoked to prove strong

consistency and asymptotic normality, respectively, of the estimator.

The method of stochastic approximation assumes that arbitrarily small

adjustments of the dose may be performed. However, the set of possible

doses is finite in any experimental situation because of limitations of the

measuring instruzients. A sequential design which takes this fact into

/ 1 consideration is the random walk design, used in the estimation of 0½.
It is described in its most general form by Tautakawa 17). In this design

x1 is selected by the experimenter and for i z 1
x1 +d if O � R i~~

k

• x * x. if k < R  < n - ki+l 1 i
xi

_ d  if n _ k � R ~~�n~

where d is a positive real number , n is the number of observations at each

X j .  R~ is the nuab r of responses at X j ~ and k is an integer such that

O � k c ~~.. Forn .land k-Oth is design is c~~~only known as the

u~-aM-down method. When s pling is terminated after N steps, Tautakawa

uses the statistic

- - — — - —  -~~~~~~~~ - -
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N+l
XN N  i-2~~~

for estimating 0½ • While this estimator is not consistent, Tsutakawa

claims that for symmetric continuous F, I A - 0¼ 1 � d/2, where A is the

almost-sure limit of X
N 
as N . co • This is sufficiently close from a practical

point of view.

~ f Modifications of the up-and-down method have been proposed for the

purpose of estimating general O~ • One such modification is due to Derman [4].

In his design the choice of x1 is left to the experimenter and f~’r i ~ 1
- d with probability if Y1(x~

) = 1

— x1 + d with probability 1 - if Y
~

(xi) = 1

Xi 
+ d if Yi (x1) — 0

for -~~ � a < 1. The alterations for 0 < a < are straightforward. Derman

- - estimates 0 such that F(0 - 0) � a � F(O) by 0N’ the most frequent value of

x in N steps or the arithmetic mean of such values if there are ties, and

proves the following theorem:

Theorem. If F(x) is increasing on [0 - d, 0 + d], then Pr {max{111i 0N - 0 1,

• I lim ON - e I} < d} — 1.

Note that none of the methods discussed above makes use of the likelihood

function in obtaining an estimator for 0a• 
This fact places them out of

- full compliance with one of the tenets of Bayesianism, the likelihood

principle, as we shall see in the next section.

3. THE LIKELIHOOD PRINCIPLE

~efore determining the likelihood function generated by quantal-response

data, some notation will be defined . Let x~ < ... < x~ be the distinct dose

levels, let be the number of times that Xj is selected, i.e. 

- i- - - -- --
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n1 !

j—1 i ~

and let R~ be the number of responses at dose level Xj~ i.e.

Ri {J:x~.tx~} 
Y~(x~).

If we define P1 = F(x!) and let r1 be a realization of R1, then the likelihood

function generated by the data is

m ~~ r. ni
_r
iT I C  )P. 1(1 - P . )  .~(r4).

i—l ~ 
1

Accordingly, the full data {Y
~

(x1) : i - 1, . . . , N} may be summarized by the

statistic {(xj~ nji Ri): i — 1, .. ., m}. The sampling plan is not detectable

in the likelihood function. This recognition forms the germ of the likelihood

principle, which, as discussed in [2), says that two sets of data generating

equivalent likelihood functions contain the same relevant information about

the parameter. Two likelihood functions are said to be equivalent if one

is a constant multiple of the other, where the constant may depend on the

data. According to this principle, statistical inference should be based on

the whole of the relevant information about the parameter supplied by the

• data, this information being contained in the likelihood function. Average

performance characteristics, such as asymptotic properties, are irrelevant

at the data analysis stage. It is seen that the estimators associated

with the designs in Section 1 are not fully in keeping with the likelihood

principle, since they are Justified by asymptotic properties and do not

employ the totality of the useful information in the likelihood function. 

=1~ -~~~*~~- - - • ~•-•~-~~~ -• • I
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4. A CONJUGATE PRIOR FAMILY

In order to abide by the likelihood principle, a Bayesian approach

will be adopted. It will not be assumed that F belongs to a parametric

f amily of c.d.f. ’s. Since a conjugate prior distribution possesses the

appealing property that the posterior distribution is of the same form, let

us first consider a family of conjugate priors for (P1, • • •
~~ 

Ps). The

p.d.f. associated with each distribution of this family has the following

for.:

a a~-l
— C( IT Pi (1 — Pj) 

~ E~~l’ ~••‘where the a
j
’S and 6i’~ 

are res~l numbers such that

> 0 and Bi > O  for j - 1, ... , a,
i—l i— j

C is a constant ensuring that Jg(p1, ... , p.)dp1...dp,1 - 1, and

E • ((p1, .. . , ps): 0 � p1 � ... ~ 1~m ~ l}. Given values of r1, ... ,
for R1, • . . , R~, respectively, the posterior p.d.f. of (P1, ... , P~) has
the fora

m a+r -l B.n -r -l

S U ~ (1 - Pj) 
~ ~ ~ 1E~~l’ 

••~~~‘ P ).(r1, • .~
, r.) ~~~~ 

a

Unfortumately, the computation of prior and posterior eans, which are

Commonly used Bayesian estimators , is a tedious proce dure inclined to

yielding cumbersome expressions . For instance , the posterior mean of

for i • 1, ... , m in the relatively simple case of ci~ a positive integer

for all i is



1~ 6 

- - -

a1+r1-1 csm+rm
_l a a + r - 1

1 S(r 
1 • . .  

~ 
~~~~~ k )](-l)5 x

~ ~~~ 
j~—O k=l 3k

i a m m

J—1 k=j j=i+l k=j

• a+r -1 a+r -1 - -

1 1  m m  a.K l
where S(r1, ... , r~) = •• ~ ~ C T I (  k )i(-l)~ ~

j— 0 
~m

0 k=l k

• R B( 1,
i=l k=i

~ 
3k B(a, 8) is the beta function with parameters a and B, and

k—i

a a
-‘ II B(l, I 

~
8k + 

~k 
- rk 

+ 

~~~ 
is defined to be 1. The formulae for the

k=j
prior and posterior variances of the P1

1 s are conj ectured to be at least as

unattractive.

5. ISOTONIC REGRESSION METHOD

Realizing the complexity of the expressions for the prior and posterior

means of (P1, • •

~ 
P~) one may at first be inclined to divert attention to

I • 
other Bayesian estimates of this vector such as the prior and posterior

modes. Indeed, these estimates may often be obtained relatively easily by

way of an isotonic regression, the definition of which is stated below as

in [1].

Definition. Suppose that X is a finite set on which is defined a simple

order “~~
‘. A real-valued function f defined on X is said to be isotonic if

___________________ ______________________________________________________——_—•——.—i
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for all x, y € X such that x (y, f(x) � f(y). For a specified function g on

X and a specified positive function w on X an isotonic function g* on X

which minimizes

2
~ 

(g(x) - f(x)) w(x)
XEX

in the set of isotonic functions £ on X is an isotonic regression of g with

weights w with respect to the simple order “c”.

The following theorem from Cl ]  permits the use of isotonic regression for

determining modes of certain distributions in the conjugate family.

Theorem. Let g be a function defined on X , w be a positive function on X,

• be a convex function that is finite on an interval I enclosing the range

of g and infinite elsewhere, and $ be the right derivative of •. Then g~

(defined as previously) maximizes

~~ [~(f(x)) + (g(x) - f(x))$(f(x))]w(x)
XEX

in the class of isotonic functions f on X with range in I.

Let us now see how this theorem may be applied to maximize a function of

the form

• a a-l 8-1
l ip  ~ (1 ..px)

X
x-l x

with respect to p1, ~ p~ under the order restriction 0 
~ 
p1 ~ ... � p

~ 
� 1

when a ~ 1, 8~ ~ 1, and a~ + - 2 > 0 ~x. The latter restrictions ensure

the existence of a maximum . Maximizing this function is equivalent to

maximizing its natural logarithm, which is

I ________________________ - 

_______ ________

— ---•--~~
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m

~ E(a~ - l)In p~ 
+ (B - l) ln( 1 - Px) 1

x—l x

We then utilize the above theorem by taking X = {l , ..., m}, ‘~~~“ as the
a - i

simple order, g(x) - a 8 - 2’ w( x) = + 8~ 
- 2, and

X X

u l n u + ( l - u) ln (l - u) for 0 < u < l
$(u) -

0 for u = O , 1.

As an application of the procedure discussed in the preceding paragraph,

consider the function

2 • 2 3p1 (1 
- p1)p 2 (l - p2) 23 (1 - p3)

which we wish to maximize subject to the constraints 0 � p1 � p2 � p3 � 1.

The values of p1, p2, and p3 yielding this maximum are obtained from the
• isotonic regression g* of g with weights w, where g and w are as defined

below:

x g(x) w(x)
1 2 3

2 1 3
~~1

3 3 4
4

In determining g a graphical approach may be taken. First construct the

cumulative sum diagram (CSD) , which consists of the points (0, 0), (W1, C1),

(W2, G2), and (W3, G3), where

N
4 

• w( x) and C. — w( x)g(x) for j  — 1, 2, 3,
‘ x*i x—i

I • •  • —~ • — - • — • —-—- - — - — ——~~~ 
- —~~ ~~~~~~~~ 

- - 
- —-——-~~--•. - 

— -
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and connect its points. Next -onstruct the greatest convex minorant (GCM),

which i.s the graph of the supremum of all convex functions possessing

graphs below the CSD and is composed of line segments. Then for x 1, 2, 3

g*(x) is the slope of the part of the G~~M immediately to the left of the

point having abscissa W~. Hence, we have g*(l.) = g*(2) = and g*(3) =

as seen on the figure below. The CSD is composed of the solid segments,

while the GCM, where it differs from the CSD, is designated by dashed

segments.

6 
(W3, G3)

2
1
~~~~~~~~~~~~~~~~~~

2
~~~

2)

6. A PRIOR PROBABILITY MODEL

Despite its ease of computation, the joint mode may not be appealing

to some as an estimator because of the following possibility: A component

of the Joint mode may not equal the corresponding marginal mode. To see

this, consider the following example. Let the p.d.f. of interes~ be

f(~1,~2)
(P1~ P2) = p1

3
(1 - p1)p2

2(l - IE(pi, P2~

where R — {(p1, p2): 0 � p1 � p2 � l}. From isotonic regression the mode

of this distribution is (0.5, 0.5). Now, the marginal p.d.f. of P1 is

I.— 
— — 

—,- - — — —---- —- — - -
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f~~ (P1) = p1
3(1 - p ) f 1 p 2 (i - p2) 4dp2

3 i-p1 ~ 2
= p1 (1 - p1) 

~ 
p2 (1 - p

2
) dp2

= p1
3

(l — ~1)B1~~~ (5~ 3),

where B1~~ (5, 3) is defined by context . The incomplete beta function with

parameters a and b evaluated at x I ( a , b) = B ( a , b)/B(a, b) is tabulated

in [5]. Using this table we obtain f1, (O.5)= (O.5)
4B05 (5, 3) = 1.349 X 10~~ .

However, f~ (0.4) = (0.4) (O.6)B0 6~~’ 
3) = 1.536 x ~Q • Therefore, o.:~

F is not the mode of the marginal distribution of P1.

Since every component of a joint mean does equal the mean of the

corresponding marginal distribution, it may be worthwhile to investigate

whether the calculation of the prior and posterior means may be simplified

by, for example, restructuring the family of priors . Let us beg in by

considering a sequence U1~ ~~~ 
U~ of independent random variables taking

values in [0, 1). Define

(1
p
1 = U 1,

= P
~ 

+ (1 - P
~

)Ui+i for i = 1, . . • ,  m - 1.

Dealing with a prior defined in this manner is not such an unpleasant

experience . For example, if = E(P~) and • E(U~) for i = 1, . . . ,  in ,

then

Mi — vi,

— ~~ (1 - 
“

~~~~
“

~~ +i for i — 1, ... , m - 1. 

:~..... ________ -—
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Also, if = E~?1
2) and = E(U~

2) for i = 1, . . . ,  a, then

p1 =

= + 2(~i. - p1 v~41 + (1 - 2~~ +

• for i = 1 , ..., m - l .

Conversely, one can select the means and perhaps the variances of the U1’s

to be concordant with prior opinions about the corresponding mome~ts of the

This direction will be taken in the next paragraph. Another interesting

property of this process is that it is a Markov chain, since for 1 � i � in - 1

is defined only in terms of and U 1,1, which is independent of

P11 . .. ,  P
~
.

For an example of the above method, consider the case in which

• U~ Beta(l, A1 ) for 1 - 1, . . . ,  a. As described in the preceding paragraph,

the A1’s may be chosen to conform with some prior opinion about E(P~
) for

1 • 1, . ..,  a. If it is our opinion that E(P1) = p1 for i = 1, . . . ,  in , then

Iii — 1 + A1 
so that A1 — ______

Also, for i = 1, . . . ,  m - 1

= M~ 
+ (] - p)(

• Hence, A1~1 — . No:, :he joint p.d.f. of U1, ~~~~ 
U is

• •~~ 
Urn) 

— 1( 11 (1 - ui) ~

a r(A. + 1 )  m m-l 1where K = II — h A . ,  and 

~ 
~ 11 (1 - 

i~~~ )~~ 
; therefore,

the joint p.d.f. of P1, 1’nt is



S 

-

~~~~~~~~~~~~~~~~~
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A1—1 rn-i 1 — r~~1 
A . ,1— 1

h(p 1, . ~~~ 
— K(i — p1) 

~~~~ 
~ 

- ~~ 
x

rn-i
~ (1 — 

~~~~~~~~~~~~~~~~~~~~~~~~ 
. . . ,  ps),

i—i

where E 
~~~~~~~ ~~~ 

0 < p 1 < ~~~ p~ < 1). This expression may be

rearranged to yield

X( hI (1 - i i+l 
- p~) m 1E~~i ’ ‘

Hence , the family of priors of this form is contained in the conjugate

fami ly given on p. s~. The posterior p.d . f .  of (P 1, . .. ,  P )  has the form

a-i r. 
1 

A1-A1~1+n1-r1-l) 
r 

1 
Am+nm

_r
m
_l x ‘B~~1’ ‘~~m~

S(r1, • . . ,  ra) ~~~ “i ( - 1’
~~~

) 1’m ~ - I’m)

At present this is the extent of our research into this problem. In the

future we shall attempt to represent the posterior distribution in a form

which is amenable to the computation of the posterior mean. 

_ _ _
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